
CS294: Survey on AI 
guardrails
Ayushi Raj Bhatt, Amer Mriziq, Raiymbek Akshulakov 



Outline

1. Adversarial Attacks
2. Alignment strategies
3. Open-sourced Guardrails



Rapid deployment of LLMs 

Overview: What’s happening right now

Risks: ethical concerns, data 
biases, privacy issues, potential 

misuse.

Developers in charge of that risk 
(enforce safety measures for risk 

control)

Shift from transparent 
'white-box' to opaque 
'black-box' strategies.

Use of RLHF and context-sensitive 
training

Implementation of guardrails to 
filter inputs and outputs for safety



Rapid deployment of LLMs 

Overview: What’s happening right now

Risks: ethical concerns, data 
biases, privacy issues, potential 

misuse.

Developers in charge of that risk 
(enforce safety measures for risk 

control)

Shift from transparent 
'white-box' to opaque 
'black-box' strategies.

Use of RLHF and 
context-sensitive training

Implementation of 
guardrails to filter inputs 
and outputs for safety



Breaking LLMS is 
becoming



CodeAttack consistently and effectively bypasses 
the safety guardrails of all LLMs more than 80% of 
the time, outperforming other baseline 
approaches. 

“Wicked Problems”

Ren, Q., Gao, C., Shao, J., Yan, J., Tan, X., Lam, W., & Ma, L. 
(2024). Exploring Safety Generalization Challenges of Large 
Language Models via Code.



Easier

Bait switch attacks are when the initial 
prompt is a bait prompt for the model to 
output something safe. Later on, the 
adversarial attack happens when that bait 
prompt is fine-tuned to be malicious. 

Bianchi, F., & Zou, J. (2024). Large Language Models are 
Vulnerable to Bait-and-Switch Attacks for Generating Harmful 
Content.



Cheaper

“...costs less than a dollar on 
average to jailbreak GPT-3.5-Turbo 
through OpenAI API.” 

Rasputin, Banerjee, Black Brother, Mukherjee, Salud, Ren Mukherjee 
Sitawarin, C., Mu, N., Wagner, D., & Araujo, A. (2024). PAL: 
Proxy-Guided Black-Box Attack on Large Language Models. ArXiv, 
abs/2402.09674.



Possible directions 
for guardrails 



Reinforcement Learning from Human 
Feedback

● Optimizes a reward function based on 
human preferences.

● Promotes safe and beneficial model 
responses.

Reinforcement learning
RL optimizes an AI system's behavior based on rewards and penalties

Reinforcement Learning from Synthetic 
Feedback

● Automatically construct training data for 
the reward model instead of using 
human-annotated preference data.

● Larger models that have seen more and 
better samples in in-context learning.

Benefits of RL for LLM Guardrails

Scalability to complex reward functions

Robustness to distribution shift

Potential for value learning



Text-based Feedback

● Converts human intents and 
preferences into text-based feedback 
signals

● Example: The goal is to fine-tune 
models to predict the most preferred 
outputs

Supervised learning

Ranking-based Feedback

● Directly uses supervised learning to 
optimize LLMs with loss functions 
constructed from ranking-based 
feedback signals

● Example: Use the toxic model to re-rank 
the candidate token distribution of the 
model

Benefits of SL for LLM Guardrails

Stable and predictable model behavior

RL-based methods require reward modeling, 
which susceptible to systematic misalignment 

Easier to debug and interpret compared to RL



Fundamental problems
with RL and SL methods

RL based methods face both tractable (e.g., 
difficulty obtaining quality feedback) and 
fundamental challenges (reward hacking).

SL based methods struggle with generalization 
to out-of-distribution data and optimizing for 

long-term rewards compared



Debate
Scalable AI Safety via Doubly-Efficient Debate

Motivation
LLMs may make mistakes or produce harmful outputs 
on complex tasks. These tasks can be too difficult for 
humans to directly judge

Benefits for LLM Guardrails

Enables oversight of complex LLM tasks 
with minimal human judgment

Leverages LLM capabilities while reducing 
risk of mistakes or harmful outputs

Provides a framework to formally verify 
LLM behaviors and computations

Offers a promising empirical approach 
to aligning LLMs with human preferences

Overview
● An agent (or multiple agents) first proposes 

an answer to a question, and then 
alternately plays the role of debate 
participants, presenting and criticizing 
arguments for and against the proposed 
answer

● A human will act as a judge, using these 
arguments to select an answer that they 
believe to be the most accurate and 
appropriate.



Constitutional AI
Harmlessness from AI Feedback

Motivation
CAI uses a constitution of principles to guide the 
model's behavior without human feedback. The 
principles are written as natural language instructions 
that steer the model to be helpful and harmless.

Overview
● It has a supervised learning stage where 

a helpful model critiques and revises its 
own harmful responses according to the 
constitutional principles. The revisions are 
used to finetune the model to be more 
harmless while retaining helpfulness.

● It has a reinforcement learning stage 
where the AI evaluates the harmlessness of 
its own responses and generates 
comparison labels used to train a reward 
model. RL is then used to further optimize 
the model's helpfulness and harmlessness 
using the learned reward function, without 
needing human feedback.



Open Source Guardrails

Llama Guard
Nvidia NeMo
Guardrails AI

Note: There are other guardrails available in the market, such as Open AI’s solution, Microsoft Azure AI Content Safety, Google Guardrails for Generative AI. However, they are 
either not opensourced or lack details and contents for reproduction. Our discussion is limited to the three guardrails that are open-source.



What is a Guardrail?

A guardrail is an algorithm that takes as 
input a set of objects (e.g., the input 
and/or the output of LLMs) and 
determines if and how some enforcement 
actions can be taken to reduce the risks 
embedded in the objects.

Guardrails are to identify the potential 
misuse in the query stage and try to 
prevent the model from providing the 
answer that should not be given.

Liu, Y., Yao, Y., Ton, J., Zhang, X., Guo, R., Cheng, H., Klochkov, Y., 
Taufiq, M.F., & Li, H. (2023). Trustworthy LLMs: a Survey and Guideline for 
Evaluating Large Language Models' Alignment. ArXiv, abs/2308.05374.



Llama Guard

Llama Guard, developed by Meta, uses the Llama2-7b architecture to enhance safety in Human-AI interactions. It's 
specifically fine-tuned to identify six key categories: Violence, Sexual Content, Firearms, Controlled Substances, Suicide, 
and Criminal Planning, using about 14,000 training samples. Its performance matches OpenAI's moderation API. Unlike 
standard tools that just block certain language, Llama Guard analyzes the context and can tell apart human from 
AI-generated text. It processes both input and output of conversations for classification. Despite its adaptability and the 
zero/few-shot learning capabilities of large language models (LLMs), the reliability of Llama Guard depends on the model's 
understanding of specified categories and its overall predictive accuracy.



Llama Guard Guardrail Workflow



Nvidia NeMo Guardrail

NeMo Guardrails is an open-source toolkit that allows developers to 
programmatically implement specific guardrails on LLMs. These 
guardrails, or "rails", control the LLM's output to ensure it adheres to 
predefined standards such as avoiding specific topics like politics, 
following structured dialog paths, maintaining a particular language 
style, and more.

Nvidia's NeMo functions as an intermediary layer, bolstering the control 
and safety of LLMs. It utilizes Colang, an executable programming 
language developed by Nvidia in 2023, to set constraints that guide 
LLMs within defined conversational boundaries. When a user's input is 
received, NeMo converts this prompt into a vector and compares it 
against a database of vector-based canonical user forms using the 
K-nearest neighbor (KNN) method. It identifies and retrieves the most 
similar vectors to the input prompt. The toolkit then initiates a flow 
execution process, where LLMs generate a safe response based on the 
guidelines provided by the Colang program.

Nvidia NeMo Guardrail Workflow



Nvidia NeMo Guardrail

NeMo Guardrails supports three broad categories of guardrails:

● Topical guardrails: Topical guardrails are designed to ensure that conversations stay focused on a particular topic and 
prevent them from veering off into undesired areas. They serve as a mechanism to detect when a person or a bot engages in 
conversations that fall outside of the topical range. These topical guardrails can handle the situation and steer the 
conversations back to the intended topics. For example, if a customer service bot is intended to answer questions about 
products, it should recognize that a question is outside of the scope and answer accordingly.

● Safety guardrails: Safety guardrails ensure that interactions with an LLM do not result in misinformation, toxic responses, or 
inappropriate content. LLMs are known to make up plausible-sounding answers. Safety guardrails can help detect and enforce 
policies to deliver appropriate responses. Other important aspects of safety guardrails are ensuring that the model’s responses 
are factual and supported by credible sources, preventing humans from hacking the AI systems to provide inappropriate 
answers, and mitigating biases.

● Security guardrails: Security guardrails prevent an LLM from executing malicious code or calls to an external application in a 
way that poses security risks. LLM applications are an attractive attack surface when they are allowed to access external 
systems, and they pose significant cybersecurity risks. Security guardrails help provide a robust security model and mitigate 
against LLM-based attacks as they are discovered.



Guardrails AI

Guardrails AI is a framework designed to enhance the reliability and structure of outputs from large language models (LLMs). It 
functions through a three-step process:

1. Defining the RAIL Specification: This initial step involves crafting a set of RAIL (Return, Assurance, Integrity, Limitation) 
specifications. These specifications outline the expected format and constraints for the LLM outputs, such as structure and 
data types. The specifications must be expressed in a specific XML format, which sets the foundation for rigorous output 
verification.

2. Initializing the Guard: Once the RAIL specifications are defined, they are activated as a 'guard'. This guard acts as an 
oversight mechanism for the LLM outputs. For applications needing detailed checks—like toxicity filtering—additional 
classifier models can be integrated at this stage. These classifiers assess both the inputs and outputs for compliance with the 
defined specifications.

3. Error Handling and Correction: The final step occurs when the guard identifies a discrepancy in the LLM output that 
violates the RAIL specifications. In such cases, Guardrails AI automatically generates a corrective prompt that guides the 
LLM to produce an output that aligns with the required standards. This new output is then reassessed to ensure it meets all 
the predefined criteria.

Currently, Guardrails AI is specifically tailored for text-based applications and does not support multimodal contexts involving 
images or audio. This technology ensures that the outputs from LLMs are not only accurate but also adhere to predefined quality 
and structure guidelines.



Guardrail-AI Workflow



Thank you!



Nvidia NeMo Guardrail Workflow



Detectors (IBM)

Achintalwar, S., Garcia, A.A., Anaby-Tavor, A., Baldini, I., Berger, S.E., Bhattacharjee, B., 
Bouneffouf, D., Chaudhury, S., Chen, P., Chiazor, L., Daly, E.M., Paula, R.A., Dognin, P.L., Farchi, 
E., Ghosh, S., Hind, M., Horesh, R., Kour, G., Lee, J.Y., Miehling, E., Murugesan, K., Nagireddy, 
M., Padhi, I., Piorkowski, D., Rawat, A., Raz, O., Sattigeri, P., Strobelt, H., Swaminathan, S., 
Tillmann, C., Trivedi, A., Varshney, K.R., Wei, D., Witherspooon, S., & Zalmanovici, M. (2024). 
Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations.





Sun, L., Huang, Y., Wang, H., Wu, S., Zhang, Q., Gao, C., Huang, Y., Lyu, W., Zhang, Y., Li, X., Liu, Z., Liu, Y., Wang, Y., Zhang, Z., Kailkhura, B., Xiong, C., Xiao, 
C., Li, C., Xing, E.P., Huang, F., Liu, H., Ji, H., Wang, H., Zhang, H., Yao, H., Kellis, M., Zitnik, M., Jiang, M., Bansal, M., Zou, J., Pei, J., Liu, J., Gao, J., Han, J., 
Zhao, J., Tang, J., Wang, J., Mitchell, J., Shu, K., Xu, K., Chang, K., He, L., Huang, L., Backes, M., Gong, N.Z., Yu, P.S., Chen, P., Gu, Q., Xu, R., Ying, R., Ji, S., 

Jana, S.S., Chen, T., Liu, T., Zhou, T., Wang, W., Li, X., Zhang, X., Wang, X., Xie, X., Chen, X., Wang, X., Liu, Y., Ye, Y., Cao, Y., & Zhao, Y. (2024). TrustLLM: 
Trustworthiness in Large Language Models. ArXiv, abs/2401.05561.



notepad

Guardrails, (matters in context of industry)

What are 

the holes in guardrails,

 the defense strategies 



Agenda

1. Overview of current open-source solutions: 

a. Llama Guard

b. Nvidia NeMo

c. Guardrails-AI

2. Challenges and the road towards building more 

complete solutions <add more>

Note: There are other guardrails available in the market, such as Open AI’s solution, Microsoft Azure AI Content Safety, Google Guardrails for Generative AI. However, they are either not opensourced or 
lack details and contents for reproduction. Our discussion is limited to the three guardrails that are open-source. 



Overview

Recent developments have significantly increased the deployment of large language models (LLMs), which are prized for 
their broad and powerful capabilities. Yet, this rapid integration has sparked considerable concerns about their risks, 
including ethical challenges, data biases, privacy issues, and robustness. Societal concerns extend to potential abuses by 
malicious entities, such as spreading misinformation or facilitating criminal activities.

To mitigate these risks, model developers have instituted various safety measures to restrict LLM behaviors to safer 
operational parameters. The inherent complexity of LLMs, with their elaborate networks and numerous parameters, 
coupled with the often proprietary nature of models like ChatGPT, presents significant challenges. These complexities 
necessitate distinct strategies from those used in earlier AI models, which relied on transparent ('white-box') techniques, 
including regularizations and architectural modifications during model training.

In response, alongside approaches like reinforcement learning from human feedback (RLHF) and context-sensitive training, 
the field is increasingly adopting 'black-box', post-training strategies. One prominent example is the implementation of 
guardrails that monitor and filter the inputs and outputs of LLMs to ensure safer and more reliable outcomes. These 
strategies represent a critical evolution in managing the capabilities and risks of modern AI technologies.


